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Statistical Analysis of K 2 x 2 Tables: A
Cor parative Study of Estimators/Test
Statistics for Association and Homogeneity

by Thomas W. O'Gorman,* Robert F. Woolson,* Michael P.
Jones,* and Jon H. Lemke*

In order to control for confounding variables, epidemiologists often obtain data in the form of a 2 x 2
table. One variable is usually the disease status, while the other variable represents a dichotomous exposure
variable that is suspected of being a risk factor. If a confounding variable is present, the data are often
stratified into several 2 x 2 tables. The objectives of the analysis are to test for the association between
the suspected risk factor and the disease and to estimate the strength of this relationship. Before estimating
a common odds ratio, it is important to check whether the odds ratios are homogeneous. This paper
presents the results of a Monte Carlo study that was performed to determine the size and power of a
number of tests of association and homogeneity when the data are sparse. We also evaluated the perfor-
mance of three estimators of the common odds ratio. For the Monte Carlo studies, equal numbers of cases
and controls were used in a wide variety of sparse data situations. On the basis of these studies, we
recommend the Breslow-Day test for nonsparse data, and the T4 and T5 statistics for sparse data to test
for homogeneity. The Mantel-Haenszel test of association is recommended for sparse and nonsparse data
sets. With sparse data, none of the odds ratio estimators are entirely satisfactory.

Introduction
Epidemiologists often stratify data to control for a

confounding variable in order to evaluate the relation-
ship between a suspected risk factor and disease. If K
levels of the confounding variable are used, and if the
risk factor and the disease are dichotomous, then the
data can be arranged in a K x 2 x 2 table of observed
cell counts.
A common objective is to perform a test of association

between the disease and the risk factor after controlling
for the confounding variable. Another common objec-
tive is to estimate the common disease, or the exposure
odds ratio. Before performing a test of association, it is
desirable to determine if the assumption of a common
disease, the exposure odds ratio is tenable. Therefore,
a test of homogeneity is often a first step in the analysis
of several 2 x 2 tables.
Many tests and estimates have been proposed for

multiway contingency tables (1). However, these tests
that are based on asymptotic distribution theory may
not be valid when used on tables having few observa-
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tions in some of the cells. One objective of this study is
to evaluate the behavior of these large sample tests
when some of the counts are small, i.e., for sparse data.

In the last few years some homogeneity tests have
been designed specifically for the sparse data setting
where the number of strata (K) is large but the cell
counts are small (2). A second objective is to evaluate
the performance ofthese sparse data tests. Monte Carlo
methods were used in this study since analytic com-
parisons are not feasible for these situations. This paper
reviews a portion of the more detailed studies we have
published on these topics. (3,4).

Description of Simulation
In both studies (3,4) we use Monte Carlo methods to

generate cell counts for K x 2 x 2 tables. These cell
counts are used to compute homogeneity tests, associ-
ation tests, and odds ratio estimators. For the ith 2 x
2 table we use the notation for the cell counts presented
in Table 1.

Let xi be the binomial count from ni independent
trials with probability of success pli, and let yi be an
independent binomial count from mi independent trials
with probability of success P2i. In a case-control study
xi is the number of exposed cases while yi is the number
of exposed controls. Let ti = xi + yi.
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Table 1. Notation for cell counts.

Group Exposed Unexposed Total
Cases xi ni-xi n
Controls Yi Mi-Yi M

ti Ni-ti Ni

For the Monte Carlo study we specify the probability
of a control having been exposed (P2i) for i = 1,..., K
and we specify the odds ratio (*i) for i = 1,..., K.
Using the formula

4i
1-P2i + i P2i

we compute the probability of a case having been ex-
posed for i = 1,... , K. For the ith stratum the number
of exposed cases (xi) is the number of random numbers
that are less that pji out of ni calls to the uniform [0,1)
random number generator. The number of exposed con-
trols (yi) are obtained in a similar fashion and the re-
mainder of the table is computed by subtraction. In our
simulation studies equal numbers of cases and controls
were used in all strata. Also, for most of the studies the
strata were balanced so that

Mi = ni = N/(2K)
K

for i = 1, . . ., K, where N = Ni

Monte Carlo simulations based on 1000 tables were
performed for a range of values of the odds ratio (Q4),
the probability of exposure for a control (P2i), the num-
ber of strata (K), and the total number of cases (n+)
and controls (m+). We used n+ = m+ = 64, 128, 256,
512 with K = 2, 4, 8, 16, 32. The probability of exposure
for a case was set at P2i = 0.05, 0.10, 0.30, 0.50 for i

1...,9K.
For studies of the odds ratio estimator and tests of

association we used a constant odds ratio of 4,i = 1, 2,
4, 8, 16 for i = 1, . . ., K. For studies of the power of
the tests of homogeneity the *4i were generated accord-
ing to several distributions. These distributions in-
cluded the lognormal, exponential, two-point, and uni-
form. For more details concerning the distributions
used see Jones et al. (4).

In these sparse data simulations it is not uncommon
to generate a zero for a cell count. These zero counts
sometimes required special handling. If either ti = 0 or
Ni - ti = 0 then the ith table has a zero contribution
to the test statistics for homogeneity and association
and to the odds ratio estimates. See O'Gorman et al. (3)
and Jones et al. (4) for details on these situations.

Description of Tests
Tests of Homogeneity
The likelihood ratio test of homogeneity (LRTH) and

the Pearson test of homogeneity (PH) can be computed
from the maximum likelihood cell estimates (1) of the

cell probabilities. These estimates are obtained from the
iterative proportional fitting algorithm (5).
Breslow and Day (6) proposed the statistic

K [xi - ei(AMH)]2
it= i Var(xi MH)

where *MH is the Mantel-Haenszel (7) estimator of the
common odds ratio; ei *MH) is the expected value of xi
given *MH and is computed as the solution to the quad-
ratic equation ei(mi - ti + ei) = 4MH(ni - ei)(ti - ei);
and the variance estimator is given by Var(xi 4jMH)_=
{l/ei + 1/(ni - ei) + 11(ti - ei) + 1/(mi - ti + ei)})1
Tarone (8) recommended the test statistic

K [xi ei(4MH)]2
i= 1 Var(xi |MH)

-K K-2

Xi - E ei(JMH)
K

> Var(xi I|MH)

which differs from BD only by the correction term.
Given the table margins ni, mi, and ti, i = 1, .... Kg

the conditional likelihood is [Ihi(xi l,i) where hi(xi Pi)
is the noncentral hypergeometric density. For future
reference let us define the exact conditional moments
Ejx~I 4,) = Yurhi(u 4,) for r - 1, where the summation
is over u. From the conditional likelihood we derive the
conditional score test

K A1
>1 i -Ejx~i]}

t= 1 Varc[xjI
where &c is the maximum conditional likelihood esti-
mator of 4, (11) and Varc[x I &] = EJ[4

A

E2 4,J.]
Liang and Self (2) derived two tests for the sparse

data situation. The first statistic is a normal approxi-
mation to the conditional score test, CS and is denoted
by T4 where:

CS - K*
T4 = [VarA(CS i,c) - g2(tC)V(tc)]1/2

where K* is the number of tables with nonzero margins;
V(4O) = 4,24[ Varc(xi 4];
B() =

EEc(2 I 4-3Ec(xi2 I O) Ec(xil 4 + 2E3(xi 4
i=1 4C Var(xi 4)

VarA(CS 4) = E E2{[xiEC(xI|,)]4|4,}i=i VarC(Xi 4,)

The second score test statistic is a normal approxi-
mation for a mixture model and is given by

T = S[I_ J2 -1-1/2775 = S[11 - 122]1/
where

104

- K*



STATISTICAL ANALYSIS OF K 2 x 2 TABLES

S = I {[xi - E j(xi| 4c)]2 - Varc(Xi Xc)}s
I,, = Y. -E x E(xi |c)]2 - Varc(XS C)]21 Xc}
I12 = Y. -E Ejxi |c]3 14 c}q
I22 = Y Varc(xi 4c).
The LRTH, PH, MBD, and CS test statistics are

asymptotically X2-_ random variables under Ho: j =
4, for i = 1 ...., K. In the sparse data setting, as K-
X0 the tests statistics T4 and T5 are both asymptotically
normal. While the asymptotic null distribution of BD is
not chi-square, (Fuji and Yanagawa, personal commu-
nication), we compare it to the chi-square tabular values
in our simulation studies.

Tests of Association
Four tests of association for each K x 2 x 2 table

are compared by O'Gorman et al. (3). These are the
likelihood ratio (LRA) statistic, the Mantel-Haenszel
(MH) statistic, the Pearson (PA) statistic, and the
weighted least squares (WLS) statistic. The LRA and
PA statistics are computed from the maximum likeli-
hood estimates of the cell counts. These estimates are
obtained by using the iterative proportional fitting al-
gorithm (5). Bishop, Fienberg, and Holland (1) show
that these statistics are equal to the goodness-of-fit sta-
tistic for the no association model minus the goodness-
of-fit for the association model.
The Mantel-Haenszel (7) test statistic for association

is

Kx- K 2

2

XMH= K nimiti(Ni - ti)
i(N. - 1)

The weighted least squares test statistic for associ-
ation according to Wolf (10) is

2 =
XWLS

1~~~~~~~~~~2

i=21 [yi(ni - xi)

K i

=wi

where

Ii=t+ 1 +1 1

=i + + -+x,xi Mi -Yi Yi ni -xi

If any of the cells are zero they are replaced by 0.5 in
our simulations before calculating Xvus

Odd Ratio Estimators
The three odds ratio estimators that are used in this

study are the Mantel-Haenszel (1) estimator, the

weighted least squares estimator (9), and the condi-
tional maximum likelihood estimator (10).
The Mantel-Haenszel estimator is defined by

*WLS =

K

Exi(mi - yi)lNi
i=i
K

Eyi(ni - xi)lNi
i=l

The weighted least squares estimator is defined by

K~ 1xi(mi iI yWi log (n )
'PWLS - exp I~ K

zwi
i=l

where Wi is defined above for the weighted least squares
test for association.
The third estimator considered in this evaluation is

the conditional maximum likelihood estimator which is
defined by first considering the conditional distribution
of xi given the margins of the table, i.e. given (ni, mi,
ti, Ni - ti). Following Gart (10,11) this distribution is
a noncentral hypergeometric distribution for each stra-
tum, that is,

Pr[Xi = xi ni, mi, ti] =

[-x] [ti - Xi

mi(ti n) rnil rMi u

EU=Max(o,ti-Mi) Lu 2 ti - u 4

for i =1,2 .. K. The conditional maximum likelihood
estimator, *MCLE is defined as the root of

K K

X= Ei(Xi; 4,

where Ei(Xi; 4) is the mean of Xi.

Results of Monte Carlo Study
Full details of the simulations are described else-

where (3,4). Here we only describe the key findings
from our studies.

Results for Tests of Homogeneity
The sizes of the tests of homogeneity are estimated

from the percentage of times the hypothesis of a com-
mon odds ratio is rejected. When compared to the chi-
square tabular values, the tests based on PH, BD,
MBD, and CS generally maintain their nominal size in
the large stratum situation, while the test based on
LRTH rejects much too often. In the sparse data sit-
uation the tests based on T4 and T5 maintain their size,
while generally the tests using PH, BD, MBD, and CS
do not reject often enough.
The powers of the tests are estimated by the number
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of times the test statistics lead to rejection of the hy-
pothesis of a common odds ratios when the odds ratios
were not held constant. The odds ratios were generated
according to lognormal, exponential, two-point, and uni-
form distributions. For those tests that maintain their
sizes near the 5% level, the PH, BD, MBD, and CS
tests have about equal power for the large stratum set-
ting where they are superior to T4 and T5. In the sparse
data setting T4 and T5 are generally more powerful than
the other statistics.

It should be noted that all of these tests of homo-
geneity have low power. For example, with 128 cases
and 128 controls, if we generate 4i from a uniform [1.0,
4.0] distribution the power is less than 13% for all of
the tests for K = 2, 4, 8, 16, and 32. Also, for many
situations studied, the power is not sensitive to the
number of strata (K) so long as the total sample size is
kept constant. Jones et al. (4) gives further details and
a discussion concerning the reasons for the low power.
We also studied the situation where 50% of the cases

and controls were placed in one large table while the
remainder were placed equally among the other tables.
In these unbalanced tables we used 4p = 1 for the large
table and 4i > 1 for the other tables.
For these situations the test based on T5 was most

powerful and the test based on BD was the second most
powerful. In our studies T5 performed well in both the
balanced and unbalanced sparse data settings,while the
BD statistic performed well in the large stratum set-
tings.

Results for Tests of Association
The MH test maintained its size for both large stra-

tum and small stratum situations. The LRA test held
its size for large stratum but tended to be anti-con-
servative in the small stratum setting. The PA and WLS
tests maintained their size for the large stratum case
but were much too conservative with sparse data. The
powers of these tests were estimated by the proportion
that led to rejection of the hypothesis of a common odds
ratio of 1.0 when the common odds ratio exceeded 1.0.
The power of the LRA and MH test were approximately
equal and were not related to the number of strata used.
Because of their conservative sizes, the powers of the
PA and WLS tests were considerably below the powers
of the LRA and MH tests with sparse data.

Results for Odds Ratio Estimators
The median and the interquartile ranges of the three

odds ratio estimators were also estimated in the Monte
Carlo study. When 4i = 1.0 for i = 1,..., K all three
estimators have median values near 1.0. For sparse data
the interquartile range of AWLS iS less than that of the
other two estimators. For Pi = 4.0 for i = 1, . . ., K,
the median values of MH and AMCLE are near 4.0 for
nonsparse data and for sparse data. For 4i = 4.0 the
median values of WLS are near 4.0 for nonsparse data
but are much below 4.0 for sparse data.

For nonsparse data the variability of the three odds
ratio estimators are approximately equal. For sparse
data the interquartile range of WLS iS less than that of
*MH and 4MCLE.

Summary
We compared the performance of three combined

odds ratios estimators and four tests of association using
Monte Carlo techniques (3,4). For these Monte Carlo
studies a constant odds ratio is used with an equal num-
ber of cases and controls. In addition, a wide range of
odds ratios, probabilities of exposure, numbers of cases,
and strata are used. For each of the K 2 x 2 tables,
1000 simulations were generated for each configuration
ofthe parameters studied. The Mantel-Haenszel (7), the
weighted least squares (9), and maximum conditional
likelihood (10) estimators of the odds ratio were com-
puted. In addition, the likelihood ratio (1), Mantel-
Haenszel, Pearson, and weighted least squares tests of
association are studied. These studies indicate that the
interquartile range of the weighted least squares esti-
mator is usually less that of the other estimators; al-
though in many situations the median of this least
squares estimator is far from the population odds ratio.
With sparse data the Mantel-Haenszel test for associ-
ation maintains its size. For the range of parameters
studied here, the degree of stratification does not
greatly affect the power of the likelihood ratio and the
Mantel-Haenszel test statistics.

In addition to studying measures of association and
tests for association, we also examine several tests for
homogeneity. We conclude that the Breslow Day sta-
tistic (6) is a reasonable statistic for use in nonsparse
data settings when taking into account both the size and
power of the test. In balanced sparse data settings the
T4 statistic of Liang and Self (2) performs the best when
all tables, regardless of sample size, have odds ratios
generated from the same distribution. In sparse data
settings characterized by a large table with an odds ratio
of 1 and many small tables of odds ratios greater than
1, the T5 statistic of Liang and Self (2) performs the
best. One result of these investigations is that virtually
all of the homogeneity tests have generally low power
in the presence of sparse data.

Recommendations
The Breslow-Day test of homogeneity is recom-

mended for nonsparse data. For sparse data the T4 and
T5 statistics are the most powerful tests of homogeneity
and are recommended. The choice between T4 and T5
should be based on considerations found in (4). For tests
of association the Mantel-Haenszel test is recom-
mended. The three estimators studied here cannot be
recommended for sparse data, although the Mantel-
Haenszel performs reasonably well. A modified version
of MH studied by Hauck et al. (12) may be preferred
in extreme sparse data settings.
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